

E-ISSN: 2709-9407 P-ISSN: 2709-9393 JMPES 2021; 2(2): 59-60 © 2021 JMPES

www.mathematicaljournal.com

Received: 19-04-2021 Accepted: 22-06-2021

Shuang Cheng

Department of Mathematics, Tiangong University, Tianjin 300387, People's Republic of China

Qingjun Kong

Department of Mathematics, Tiangong University, Tianjin 300387, People's Republic of China

Finite groups with weakly-supplemented subgroups of prime orders

Shuang Cheng and Qingjun Kong

Abstract

A subgroup H of a finite group G is weakly-supplemented in G if there exists a proper subgroup K of G such that G=HK. In the paper, one interesting result with weakly-supplemented minimal subgroups of G is obtained. Some known results are generalized.

Keywords: Finite group, weakly-supplemented subgroups, supersolvable groups

1. Introduction

It is well known that a subgroup H of a finite group G is complemented in G if there exists a subgroup K of G such that G=HK and $H \cap K = 1$. Such a subgroup K of G is called a complement to H in G. It is clear that the existence of complements for certain subgroups of a finite group gives a lot of useful information about its structure, such as in [1, 2, 4-7] etc. For instance, P. Hall in [4] proved that a finite group is solvable if and only if every Sylow subgroup of G is complemented. Arad and Ward in [1] proved that a finite group is solvable if and only if every Sylow 2-subgroup and every Sylow 3-subgroup are complemented. In particular, Hall in [5] proved that a finite G is supersolvable with elementary abelian Sylow subgroups if and only if every subgroup of G is complemented in G. Ballester-Bolinches and Guo in [2] shown that: Let P be a Sylow p-subgoups of G, where G is a finite group and p is the smallest prime divisor of |G|. If every maximal subgroup of P is complemented in G, then G is p-nilpotent. Qiao, Isaacs and Li in [7] extended the above result and proved that: Let P be a Sylow p-subgoups of G, where G is a finite group and p is the smallest prime divisor of |G|. Let d be a power of p with 1<d<|P|, and assume that every subgroup of P having order d is complemented in G. Suppose also that N_{G}(P) is p-nilpotent. Then G is p-nilpotent. In a recent paper, Kong and Liu in [6] studied finite groups for which every minimal subgroup is weakly-supplemented. A subgroup H of G is weakly-supplemented in G if there exists a proper subgroup K of G such that G=HK. They proved that every minimal subgroup of G is weakly-supplemented in G if and only if G is a supersolvable group and all Sylow subgroups of \$G\$ are elementary abelian.

In this note, we further investigate the influence of weakly-supplemented subgroups on the structure of finite groups along the above direction. Our main result is the following:

Theorem A. Let G be a finite group, $p \in \pi(G)$. Every subgroup of order p is weakly-supplemented in a p-solvable group G if and only if G is a p-supersolvable group with elementary abelian Sylow p- subgroups.

All groups considered in this paper are finite groups. Our notation and terminology are standard. The reader may refer to ref. [3].

2. Preliminary results

In this section, we give one lemma which are useful for our main results.

Lemma 2.1 ([6]) Let G be a group. $p \in \pi(G)$, Suppose that every subgroup of G of order p is weakly-supplemented in G. Then:

. If H is a subgroup of G, then every subgroup of H of order p is weakly-supplemented in H; in particular, a Sylow p-subgroup of G is elementary abelian and weakly-supplemented in G.

Correspondence Shuang Cheng Department of Mathematics, Tiangong University, Tianjin 300387, People's Republic of China ii. If N is a normal subgroup of G and G is p-solvable, then every subgroup of G/N of order p is weakly-supplemented in G/N.

3. Proof of the Main Theorem

Proof of Theorem A. By Lemma 2.1(i), every Sylow p-subgroup of G is elementary abelian and weakly-supplemented in G. Let us verify that G is p-supersolvable. We use induction on the order of G. By Lemma 2.1(ii), the conditions of the theorem hold for all quotient groups, so we may assume $O_p(G) = \Phi(G) = 1$, $N = F(G) = O_p(G) = C_G(F(G))$, and N is a minimal normal subgroup of G. It follows that G has a maximal subgroup M with G = [N]M. Let X be a subgroup of N of prime order p. By the hypotheses of the theorem, there is a proper subgroup Y of G such that G = XY. The subgroup $O_p(G) = O_p(G) = O_p(G) = O_p(G)$ is normal in

Y and centralized by X. Hence N_1 is normal in G. But N is a minimal normal subgroup of G. Thus N_1 =1, N has prime order p, so G is p-supersolvable. Thus necessity is proved.

Now we prove sufficiency. Let G be a p-supersolvable group with elementary abelian Sylow p- subgroups . Fix an arbitrary subgroup A of prime order p. Suppose that there exists a normal subgroup $N \neq 1$ such that A is not contained in N. Then $A \cap N = 1$ and by induction, the subgroup AN / N is weakly-supplemented in G/N. Suppose that B/N is weakly-supplement for AN / N in G/N. Then $AN / N \cap B / N = N / N$, $AN / N \cap B / N = N / N$, $AN / N \cap B \cap B = 1$ since |G| = 0. So we may assume that every normal subgroup of the group G contians A. Since every minimal normal subgroup

of a p-supersolvable group either has order p or is a p'-subgroup, it follows that A is the only minimal normal subgroup of G. But A is weakly-supplemented in the Sylow p-subgroup since the latter is elementary abelian. The theorem of Gaschutz of [3, Theorem I.17.4] implies that the subgroup A is weakly-supplemented in G. Thus our proof is complete now.

Acknowledgements

The paper is dedicated to Professor O.H.Kegel for his 80th birthday.

Rreferences

- Arad Z, Ward MB. New criteria for the solvability of finite groups, J. Algebra 1982;77:234-246.
- 2. Ballester-Bolinches A, Guo X. On complemented subgroups of finite groups, Arch. Math., 1999;72:161-166.
- 3. Huppert B, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967
- 4. Hall P. A characteristic property of soluble groups, J. London Math. Soc. 1937;12:188-
- 5. Hall P. Complemented groups, J. London Math. Soc 1937;12:201-204.
- 6. Kong Q, Liu Q. The influence of weakly-supplemented subgroups on the structure of finite groups, Czechoslovak Math. J. 2014;64(139):173-182.
- 7. Qiao S, Isaacs IM, Li Y. complemented subgroups and p-nilpotence in finite groups, Arch. Math., 2012;98:403-411.